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Random Variable

Question: What is a random variable?

Intuitively, we can think of a random variable as a model of an outcome that is
uncertain.

• Example: Flipping a coin, traffic in the morning, etc.

While the outcome is random, the random variable does have a distribution. For
any subset of the outcome space, the distribution describes the probability that the
random variable takes a value in that subset.

• Example: We know that our flipped coin has a 50% probability of taking a
value in the set {H}, a 50% probability of taking a value in the set {T}, and
a 100% probability of taking a value in the set {H,T}.
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Random Variables

Question: Why do we care about random variables? What does this have to do
with econometrics?

Consider the population of California. Suppose we want to know about the
education levels of people in the population.

• The education level of a randomly selected person in the population is not
deterministic. Different people have different levels of education.

• We can think about the education level as a random variable with a
distribution that describes the probability that a randomly selected person has
an education level in certain range.

◦ i.e 30% of people have high school diplomas, 40% of people have college
degrees, etc.

• In general however, we may not know the exact distribution of the random
variable. Econometrics is about using a random sample of data to make
inferences about the underlying distribution of the random variable.
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Single Random Variables: Outcome Spaces

Let’s formalize the discussion above. Let X denote a random variable. All random
variables come equipped with an outcome space that contains all the values that
the random variable can take up.

• If X represents the flipping a coin, the outcome space is {H,T}.

• If X represents rolling a die, the outcome space is {1, 2, 3, 4, 5, 6}.

• If X represents the 100m sprint time (in seconds) of an Olympic athlete, the
outcome space may be [9.5, 10.5].

If the outcome space of X is countable (think finite), then we say that X is a
discrete random variable. If the outcome space of X is uncountable (think
infinite), we say that X is a continuous random variable

.

• Flipping a coin and rolling a die would be discrete random variables

• The 100m sprint time of an Olympic athlete would be a continuous random
variable.
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Single Random Variables: Outcome Spaces and Probability

In general in this class, we will notate the outcome space of a random variable X
as OX . Let 2OX denote all the subsets of OX .

We will typically be interested in the probability that X takes values in some
A ∈ 2OX (that is A ⊆ OX). This probability is a number between 0 and 1 and will
be notated as PX(A). We will require the probability PX(·) to satisfy certain
properties:

• PX(OX) = 1 and PX(∅) = 0.

• 0 ≤ PX(A) ≤ 1 for any A ∈ 2OX .

• If A1, A2, . . . are pairwise disjoint, then PX(∪iAi) =
∑

i PX(Ai).

When we say we are interested in the distribution of the random variable X, we
really mean we are interested in PX(·) as viewed as a map from 2OX onto [0, 1].
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Single Random Variables: Discrete Random Variables

If X is a discrete random variable the distribution or probability function PX can
be described by the probability mass function or pmf, pX(·) : OX → [0, 1].

• Recall that a discrete random variable has a countable (think finite) outcome
space

For each element a of the outcome space (a ∈ OX), the probability mass function
evaluated at a, pX(a), describes the probability that X takes value a. That is
pX(a) = PX({a})

.

By the last property of probability measures, the pmf can be used to recover the
probability that X takes values in any subset A of the outcomes space OX

PX(A) =
∑
a∈A

PX({a}) =
∑
a∈A

pX(a).
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Single Random Variables: Discrete Random Variables

Let’s see an example of this. Let X denote the outcome of a fair dice roll. We can
describe the distribution of X via the probability mass function

pX(a) =

{
1
6

if a ∈ {1, 2, 3, 4, 5, 6}
0 for any other value of a

Let’s use the pmf to compute PX(A) for A = {2, 4, 6}, that is use the pmf to
compute the probability that X takes on an even value.

PX({2, 4, 6}) =
∑

a∈{2,4,6}

PX({a})

=
∑

a∈{2,4,6}

pX(a)

=
1

6
+

1

6
+

1

6

= 1/2

Of course, this result is a bit obvious. However, if the die was not fair, we would
follow the same procedure to compute this probability.
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Single Random Variables: Continuous Random Variables

If X is a continuous random variable we cannot use a probability mass function to
describe its distribution.

• Recall that if X is a continuous random variable then the outcome space OX

is (uncountably) infinite.

• What would happen if PX({a}) > 0 for each a ∈ OX?

◦ Then for any (uncountable) set A

PX(A) =
∑
a∈A

PX({a}) = ∞.

◦ So we must have PX({a}) = 0 for all a ∈ OX .

• Intuitively, what is the probability that an Olympic sprinters runs the 100m
dash in exactly 9.8412312. . . seconds?

◦ Basically zero.

This rules out being able to use a pmf to describe the distribution of a continuous
random variable.
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Single Random Variables: Continuous Random Variables.

If X is a continuous random variable we cannot use a probability mass function to
describe its distribution.

Instead we will use the probability density function (pdf), fX(·) to describe the
distribution of X. The pdf is related to the probability measure PX via the
following equation:

PX(a ≤ X ≤ b) =

∫ b

a

fX(x) dx.

The identity above as well as the rules for the probability measure PX can be used
to calculate PX(A) for any set A ⊆ OX .

Manu Navjeevan (UCLA) Econ 103: Probability and Statistics 12 / 67



Single Random Variables: Continuous Random Variables.

If X is a continuous random variable we cannot use a probability mass function to
describe its distribution.

Instead we will use the probability density function (pdf), fX(·) to describe the
distribution of X. The pdf is related to the probability measure PX via the
following equation:

PX(a ≤ X ≤ b) =

∫ b

a

fX(x) dx.

The identity above as well as the rules for the probability measure PX can be used
to calculate PX(A) for any set A ⊆ OX .

Manu Navjeevan (UCLA) Econ 103: Probability and Statistics 12 / 67



Single Random Variables: Continuous Random Variables.

If X is a continuous random variable we cannot use a probability mass function to
describe its distribution.

Instead we will use the probability density function (pdf), fX(·) to describe the
distribution of X. The pdf is related to the probability measure PX via the
following equation:

PX(a ≤ X ≤ b) =

∫ b

a

fX(x) dx.

The identity above as well as the rules for the probability measure PX can be used
to calculate PX(A) for any set A ⊆ OX .
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Single Random Variables: Continuous Random Variables

Example: Let X be a continuous random variable with pdf fX given

fX(a) =

{
1 if 0 ≤ a ≤ 1

0 otherwise

This distribution is called the uniform distribution on [0, 1].

Problem: What is PX([0, 0.5])?

Answer: Use the pdf

PX([0, 0.5]) =

∫ 0.5

0

fX(x) dx

=

∫ 0.5

0

1 dx

= 0.5− 0 = 0.5
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Single Random Variables: Review

Let’s recap:

Random Variables:

• Describe an event whose outcome is unknown

• Instead we have probabilities that the outcome takes values in a certain set.

Discrete Random Variable:

• Random Variable whose outcome space is countable (think finite)

• Distribution/Probability measure completely described by pmf.

◦ pX(a) = PX({a})

Continuous Random Variables:

• Random variable whose outcome space is uncountable (think infinite)

• Distribution/Probability measure completely described by pdf

◦ PX([a, b]) =
∫ b
a fX(x) dx
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Single Random Variables

Questions?
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Single Random Variables: Expectation

One property of a random variable that we may be interested in is the expectation
of a random variable.

• The expectation can be thought of as a generalized concept of a mean.

• That is it is the “average” value the random variable X will take, weighted by
the probability that X takes each value

The expectation of X is denoted E[X] or µX and is calculated via the following

Type Discrete R.V Continuous R.V

Formula
∑

a∈OX
a · pX(a)

∫
OX

a · fX(a) da

• Note that the difference between discrete and continuous is just summation
vs. integral.
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Single Random Variables: Expectation

Suppose we enter a lottery that pays us $100 with probability 1/2, $400 with
probability 1/4, and $0 with probability 1/4. We can represent the payout of this
lottery (in dollars) with a random variable X whose pmf is given

pX(a) =


1/2 if a ∈ {100}
1/4 if a ∈ {0, 400}
0 otherwise

.

Let’s calculate the expected value of this lottery, or E[X]. This is the average
amount we can expect to win by playing this lottery. Using the formula from the
slide above:

E[X] =
∑

a∈{0,100,400}

a · pX(a)

= 0 · 1

4
+ 100 · 1

2
+ 400 · 1

4

= 50 + 100 = 150

We can expect to win about $150 by playing this lottery
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Single Random Variables: Expectation

Let’s consider the uniform distribution from before. That is, let X be continuously
distributed with outcome space OX = [0, 1] and pdf given by

fX(a) =

{
1 if 0 ≤ a ≤ 1

0 otherwise

Suppose we want to calculate E[X]. Using the formula

E[X] =

∫
OX

a · fX(a) da

=

∫ 1

0

a · 1 da

=
a2

2

∣∣∣∣1
0

=
1

2
− 0 =

1

2

So the expected value of X is 1
2

. There are many ways to interpret this expected
value, the most straightforward for me is the average amount you can expect to
win from a lottery whose payouts follow the distribution of X.
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Single Random Variables: Expectation

We can generalize this concept a bit further and consider the mean of any function
g(X), which is typically denoted E[g(X)].

• Note that g(X) itself is a random variable. It’s outcome is not deterministic
but rather follows a distribution based on X.

• As with the normal expectation, we can think about this as the average value
of g(X).

The formula for calculating E[g(X)] is basically the same as for calculating E[X].

Type Discrete R.V Continuous R.V

Formula
∑

a∈OX
g(a) · pX(a)

∫
OX

g(a) · fX(a) da

• All that has changed here is that we are multiplying the pmf/pdf by g(a)
instead of by a.
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Single Random Variables: Expectation

The formulas from this generalization also gives us a nice property that we will use

later. Recall from the last slide we can calculate E[g(X)] using:

Type Discrete R.V Continuous R.V

Formula
∑

a∈OX
g(a) · pX(a)

∫
OX

g(a) · fX(a) da

It is then straightforward to see the following:

E[ag(X) + bh(X)] = aE[g(X)] + bE[h(X)]

for any a, b ∈ R. We will refer to this property as the linearity of the expectation.
Later on when we consider multiple or joint random variables, we will see that this
can be naturally extended and for two different random variables X and Y :

E[aX + bY ] = aE[X] + bE[Y ].
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Single Random Variables: Expectation

Let’s return to the uniform distribution from before. Suppose that X follows the
pdf

fX(a) =

{
1 if 0 ≤ a ≤ 1

0 otherwise

Suppose we want to calculate E[X2]. This is like calculating E[g(X)] where
g(a) = a2. Using the formula from before

E[X2] =

∫
OX

a2 · fX(a) da

=

∫ 1

0

a2 · 1 da

=
a3

3

∣∣∣∣1
0

=
1

3
− 0 =

1

3

For an arbitrary random variable X, E[X2] is typically referred to as the second
moment of X.
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Single Random Variables: Variance

Now that we can compute E[g(X)] for any random variable X and any function
g(·), we are ready to talk about the variance.

The variance of a random variable X is given by the formula

σ2
X = Var(X) = E[(X − E[X])2]

The variance is a measure of the “spread” of the random variable X; it represents
how far on average X is from its mean. Using linearity of the expectation the
expression above can be simplified:

= E[X2 − 2XE[X] + (E[X])2]

= E[X2]− 2E[X]E[X] + E[X]2

= E[X2]− 2E[X]2 + E[X]2

= E[X2]− (E[X])2

Typically this last expression is easiest to work with. However, the first expression
gives us an important property: the variance is always ≥ 0.
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gives us an important property: the variance is always ≥ 0.
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Single Random Variables: Variance
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Single Random Variables: Variance

From the formula Var(X) = E[X2]− (E[X])2 as well as the linearity of the
expectation we can see the variance has some nice properties. For any constants
a, b ∈ R and any random variable X we get that

• Var(X + a) = Var(X)

• Var(aX) = a2 Var(X)

Putting these together gives us: Var(aX + b) = a2 Var(X).

Exercise: See if you can work this out yourselves. It shouldn’t take more than a
few minutes.
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Single Random Variables: Variance

Intuitively, Var(X + a) = Var(X) means that the spread around the mean is not
effected by just shifting the mean of the random variable (while otherwise keeping
the distribution the same).

Figure 1: Variance remains the same for both variables
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Single Random Variables: Variance

The square root of the variance is denoted

σX =
√
σ2
X =

√
Var(X).

and is called the standard deviation of X.
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Single Random Variables: Variance

Let’s see this in practice. Suppose we have a lottery that pays $200 with
probability 1

2
and nothing ($0) with probability 1

2
. The payout of this lottery is a

random variable X with pmf

pX(a) =

{
1
2

if a ∈ {0, 200}
0 otherwise

.

It is straightforward to see that the expected payout of this lottery is $100,
E[X] = 100.

However, we may want to know how much we can expect our
winnings to deviate from the expected value. That is, we want to know what the
variance of the payouts is.

Let’s compute this two ways, first using the formula Var(X) = E[(X − E[X])2]
and the second using Var(X) = E[X2]− (E[X])2.
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Single Random Variables: Variance

The payout of this lottery is a random variable X with pmf
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Single Random Variables: Variance

The payout of this lottery is a random variable X with pmf

pX(a) =

{
1
2

if a ∈ {0, 200}
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.

First:
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=
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2
+ (200− 100)2 · 1

2

= 2 · 1002

2
= 1002 = 10000
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Single Random Variables: Variance
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Single Random Variables: Variance
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Single Random Variables: Variance

The payout of this lottery is a random variable X with pmf

pX(a) =

{
1
2

if a ∈ {0, 200}
0 otherwise

.

Second:

Var(X) = E[X2]− (E[X])2

=
∑

a∈{0,200}

a2 · pX(a)− 1002

= 02 · 1

2
+ 2002 · 1

2
− 1002

=
(2 · 100)2

2
− 1002

=
4

2
· 1002 − 1002 = 1002 = 10000

No matter how we compute it, the variance of this lottery is 1002 = 10000. This
makes sense as no matter what happens (win or lose), we are $100 away from the
expected payout.

Manu Navjeevan (UCLA) Econ 103: Probability and Statistics 27 / 67



Single Random Variables: Questions?

Questions?
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Multiple Random Variables: Introduction

Oftentimes we are not only interested in a single random variable, but the
relationship between two random variables. In fact this will be the case through
the rest of this course:

• We care about the relationship between education and income

• We care about the relationship between consumption of a medicine and a
health outcome

In the examples above notice that, not only are the random variables themselves
not deterministic

• not everyone has the same education/income

but the relationship between the two random variables may not be either

• not everyone who takes a medicine will have the same health outcome

Manu Navjeevan (UCLA) Econ 103: Probability and Statistics 30 / 67



Multiple Random Variables: Introduction

Oftentimes we are not only interested in a single random variable, but the
relationship between two random variables. In fact this will be the case through
the rest of this course:

• We care about the relationship between education and income

• We care about the relationship between consumption of a medicine and a
health outcome

In the examples above notice that, not only are the random variables themselves
not deterministic

• not everyone has the same education/income

but the relationship between the two random variables may not be either

• not everyone who takes a medicine will have the same health outcome

Manu Navjeevan (UCLA) Econ 103: Probability and Statistics 30 / 67



Multiple Random Variables: Introduction

Question: How do we think about joint random variables?

Answer: Much the same as before. Let (X,Y ) be a pair of joint random variables.
This means there is some outcome space OXY that (X,Y ) can take values in and
a probability measure PXY (·) : 2OXY → [0, 1] that takes in subsets of the outcome
space A ⊆ OXY and gives the probability of both X and Y taking values in the
set A.

• For example if X is income and Y is age,

PXY ({0 ≤ X ≤ 100000, 40 ≤ Y ≤ 42})

is the probability that a randomly selected person from the population has an
income between $0 and $100,000 and is between 40 and 42 years old.

As before if OXY is countable (finite), we say that (X,Y ) are jointly discrete
random variables whereas if OXY is uncountable (infinite) we say that (X,Y ) are
jointly continuous random variables.
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Multiple Random Variables: Discrete Random Variables

Let’s quickly go over an example of a joint discrete random variables. As before,
the distribution of jointly discrete random variables will be defined by a joint
probability mass function.

• Because we are considering two random variables, X,Y , we can represent the
probability mass function as a table
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Multiple Random Variables: Discrete Random Variables

Let X be a random variable that describes whether a person gets 4 hours of sleep
a night, 8 hours a sleep a night, or 12 hours of sleep a night. Let Y be a random
variable that describes whether a person drinks 1 or 2 cups of coffee a day.

The joint pmf of X and Y can be described with the table below

p(x, y) 1 cup 2 cups
4 hours 0 1/6
8 hours 1/3 1/3

12 hours 1/6 0

Using this table we can see that the probability that a randomly selected person
gets 8 hours of sleep and drinks 1 cup of coffee a day is 1/3.

Exercise: What is the probability that a randomly selected person gets 8 hours of
sleep?
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Multiple Random Variables: Continuous Random Variables

Now we’ll go over an example of a joint continuously distributed random variable.
Just like with single random variables, the distribution of a continuous random
variable is defined by a probability density function, fXY (x, y).

• As before, the joint pdf will be related to the joint probability measure PXY (·)
via the relation

PXY ({a ≤ X ≤ b, c ≤ Y ≤ d}) =

∫ b

a

∫ d

c

fXY (x, y) dy dx.
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Multiple Random Variables: Continuous Random Variables

Let’s consider two sprinters in the 100m dash. Let X denote the finish time of the
UCLA sprinter and Y denote the finish time of the USC sprinter. Suppose their
times follow the following joint pdf

fXY (x, y) =

{
1 if 9.5 ≤ x ≤ 10.5, 10 ≤ y ≤ 11

0 otherwise
.

Let’s try to find the probability that the UCLA sprinter runs faster than 10 seconds
and that the USC sprinter runs faster than 10.5 seconds. That is we want
PXY ({X ≤ 10, Y ≤ 10.5}).

PXY ({X ≤ 10, Y ≤ 10.5}) =

∫ 10

9.5

∫ 10.5

10

fXY (x, y) dy dx

=

∫ 10

9.5

∫ 10.5

10

1 dy dx

=

∫ 10

9.5

0.5 dx

= 0.5 · 0.5 = 0.25
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Multiple Random Variables: Expectations

Just as before we may want to consider the average or expected value that some
function, g(X,Y ), of our joint random variables may take. That is, we want to
calculate E[g(X,Y )].

Here are some examples of functions g(x, y) for which we may be interested in
E[g(X,Y )]:

• g(x, y) = x =⇒ E[g(X,Y )] = E[X], the expected value of X

• g(x, y) = x− y =⇒ E[g(X,Y )] = E[X − Y ], the average difference between
X and Y .

• g(x, y) = 1{x ≤ a, y ≤ b} =⇒ E[g(X,Y )] = PXY ({X ≤ a, Y ≤ b}).

• g(x, y) = (x− µX)(y − µY ) =⇒ E[g(X,Y )] = Cov(X,Y ), the covariance
between X and Y .
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Multiple Random Variables: Expectations

The formula for calculating expected value is the same as before:

Type Discrete R.V Continuous R.V

Formula
∑

a,b∈OXY
g(a, b)pXY (a, b)

∫
X

∫
Y
g(a, b)fXY (a, b) db da

Intuition: We are evaluating the function at each point in the outcome space and
weighting by the probability of that outcome occurring.

Again note that we have the following linearity of the expectation. For any two
functions g(x, y) and h(x, y) and any a, b ∈ R:

E[a · g(X,Y ) + b · h(X,Y )] = aE[g(X,Y )] + bE[h(X,Y )].

in particular, E[aX + bY ] = aE[X] + bE[Y ].
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Multiple Random Variables: Expectations

Let’s return to the 100m dash example from before, with X representing the
finishing time of the UCLA and Y representing the finishing time of the USC
sprinter.

fXY (x, y) =

{
1 if 9.5 ≤ x ≤ 10.5, 10 ≤ y ≤ 11

0 otherwise
.

Let’s try and calculate E[X − Y ], the expected difference in finishing times
between the UCLA and USC sprinters.

E[X − Y ] =

∫ 10.5

9.5

∫ 11

10

(x− y)fXY (x, y) dy dx

=

∫ 10.5

9.5

∫ 11

10

x dy dx−
∫ 10.5

9.5

∫ 11

10

y dy dx

=

∫ 10.5

9.5

x dx−
∫ 10.5

9.5

112 − 102

2
dx

=
10.52 − 9.52

2
− 10.5 = −0.5
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Multiple Random Variables: Covariance

As mentioned before, a particular expectation we may be interested is the
covariance between X and Y , defined as

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])].

The covariance measures how much the variables X and Y “move together” and
will be of particular interest to us in econometrics. It is often notated as
σXY = Cov(X,Y ).

As before, we can simplify the expression for covariance:

Cov(X,Y ) = E[XY −XE[Y ]− Y E[X] + E[X]E[Y ]]

= E[XY ]− E[X]E[Y ]− E[Y ]E[X] + E[X]E[Y ]

= E[XY ]− E[X]E[Y ]
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Multiple Random Variables: Covariance

Let’s calculate the covariance between X and Y from the example before:

fXY (x, y) =

{
1 if 9.5 ≤ x ≤ 10.5, 10 ≤ y ≤ 11

0 otherwise
.

From the last exercise we know that E[X] = 10 and E[Y ] = 10.5. What remains is
to calculate E[XY ]:

E[XY ] =

∫ 10.5

9.5

∫ 11

10

xyfXY (x, y) dy dx

=

∫ 10.5

9.5

x

∫ 11

10

y dy dx

=

∫ 10.5

9.5

x

(
112 − 102

2

)
dx

= 10.5

(
10.52 − 9.52

2

)
= 10.5 · 10 = 105

So Cov(X,Y ) = E[XY ]− E[X]E[Y ] = 105− 105 = 0. At least to a first order,
there is no association between the UCLA sprinters times and the USC sprinters
times.
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Multiple Random Variables: Covariance

From the expression Cov(X,Y ) = E[XY ]− E[X]E[Y ], we can see some important
properties of the covariance that we will use later on

1. Linearity: Cov(aX, bY ) = abCov(X,Y )

Cov(aX, bY ) = E[(aX)(bY )]− E[aX]E[bY ] = ab
(
E[XY ]− E[X]E[Y ]

)
.

2. Symmetry: Cov(X,Y ) = Cov(Y,X) and Cov(X,X) = Var(X)

Cov(X,X) = E[XX]− E[X]E[X] = E[X2]− (E[X])2 = Var(X).

3. Sums: Var(X + Y ) = Var(X) + Var(Y ) + 2 Cov(X,Y )

Var(X + Y ) = E[(X + Y )2]− E[(X + Y )]2

= E[X2 + 2XY + Y 2]−
(
E[X] + E[Y ]

)2
= E[X2]︸ ︷︷ ︸

Var(X)

+2 E[XY ]︸ ︷︷ ︸
Cov(X,Y )

+E[Y 2]︸ ︷︷ ︸
Var(Y )

− (E[X])2︸ ︷︷ ︸
Var(X)

−2E[X]E[Y ]︸ ︷︷ ︸
Cov(X,Y )

− (E[Y ])2︸ ︷︷ ︸
Var(Y )

= Var(X) + Var(Y ) + 2 Cov(X,Y )
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Multiple Random Variables: Covariance

In fact, using the linearity of the covariance, Cov(aX, bY ) = abCov(X,Y ),
Var(aX) = a2 Var(X), and Var(bY ) = b2 Var(Y ) we can generalize the last
property a bit to read

Var(aX + bY ) = Var(aX) + Var(bY ) + 2 Cov(aX, bY )

= a2 Var(X) + b2 Var(Y ) + 2abCov(X,Y )
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Multiple Random Variables: Correlation

Another quantity of interest here is the correlation coefficient defined as

ρXY =
Cov(X,Y )

σXσY
.

where we recall that

σX =
√
σ2
X =

√
Var(X) =

√
E[(X − E[X])2]

σY =
√
σ2
Y =

√
Var(Y ) =

√
E[(Y − E[Y ])2]

Calculating the correlation is no more difficult that calculating the covariance, but
it is a bit tedious so we won’t go over an example right now.
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Multiple Random Variables: Conditioning and Independence

Finally, given two joint random variables, X and Y , we may be interested in
characteristics of the distribution of Y conditional on X taking a certain value.

Typically this will be denoted E[Y |X = x] and will be called the conditional
expectation of Y given X = x.

• We may be interested in the average income for people with college degrees,
E[Income | Education = College Graduate]

• We may be interested in the average sales price of a home with floor size 1200
sq. ft, E[Sales Price | Sqft = 1200].

• We may be interested in the average lifespan for smokers,
E[Lifespan | Smoker = 1].

In all of these note that knowing the conditional expectation is useful for making
predictions as we typically observe the X variable before we observe the Y variable.
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Multiple Random Variables: Conditioning and Independence

Calculating the conditional expectation essentially involves fixing the X variable at

the point X = x, integrating, and then dividing by the probability that X = x.

Type Discrete R.V Continuous R.V

E[Y |X = x]
∑

y y·pXY (y,x)∑
y pXY (x,y)

∫
Y

y·fXY (x,y) dy∫
Y

fXY (x,y) dy

Remark
Note that

∑
y pXY (x, y) = PXY ({X = x}). We call the quantity

∫
Y
fXY (x, y) dy

the marginal distribution of X at x and denote it fX(x).

We see that X = x is fixed in the above equations while we allow Y to vary. We
then divide by the probability that X = x (or the density of X at x, which is the
continuous analogue).
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Multiple Random Variables: Conditioning and Independence

Let’s return to a previous example where Y is the number of hours of sleep one
gets a night and X is the number of cups of coffee that one drinks a day.

The joint pmf of X and Y can be described with the table below

p(x, y) 1 cup 2 cups
4 hours 0 1/6
8 hours 1/3 1/3

12 hours 1/6 0

Let’s compute the number of hours of sleep we can expect someone gets
conditional on them drinking 2 cups of coffee. To this, let’s first calculate the
probability that one drinks 2 cups of coffee.

PXY ({X = x}) = pXY (x, y) =
1

6
+

1

3
=

1

2

Now let’s fix X = 2 and calculate
∑

y y · pXY (2, y)∑
y

y · pXY (2, y) = 4 · 1

6
+ 8 · 1

3
+ 12 · 0 =

10

3
.

Putting this together we find that

E[Y |X = 2] =
10

3
· 2

1
=

20

3
≈ 6.6667.
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Multiple Random Variables: Conditioning and Independence

This is great, but sometimes knowing X may not help us predict Y . Intuitively,
knowledge of X does not give us any additional knowledge of Y .

If this is the case we say that X is independent of Y and denote X ⊥ Y .

Some examples of independent random variables:

• Knowing that one coin flip came up heads doesn’t give you any information
about the next coin flip, we can say that successive coin flips are independent

• If I buy lottery tickets, whether or not I win the lottery is independent of the
color of the shirt I was wearing that day

◦ Unless I was wearing my lucky t-shirt

Manu Navjeevan (UCLA) Econ 103: Probability and Statistics 47 / 67



Multiple Random Variables: Conditioning and Independence

This is great, but sometimes knowing X may not help us predict Y . Intuitively,
knowledge of X does not give us any additional knowledge of Y .

If this is the case we say that X is independent of Y and denote X ⊥ Y .

Some examples of independent random variables:

• Knowing that one coin flip came up heads doesn’t give you any information
about the next coin flip, we can say that successive coin flips are independent

• If I buy lottery tickets, whether or not I win the lottery is independent of the
color of the shirt I was wearing that day

◦ Unless I was wearing my lucky t-shirt

Manu Navjeevan (UCLA) Econ 103: Probability and Statistics 47 / 67



Multiple Random Variables: Conditioning and Independence

This is great, but sometimes knowing X may not help us predict Y . Intuitively,
knowledge of X does not give us any additional knowledge of Y .

If this is the case we say that X is independent of Y and denote X ⊥ Y .

Some examples of independent random variables:

• Knowing that one coin flip came up heads doesn’t give you any information
about the next coin flip, we can say that successive coin flips are independent

• If I buy lottery tickets, whether or not I win the lottery is independent of the
color of the shirt I was wearing that day

◦ Unless I was wearing my lucky t-shirt

Manu Navjeevan (UCLA) Econ 103: Probability and Statistics 47 / 67



Multiple Random Variables: Conditioning and Independence

This is great, but sometimes knowing X may not help us predict Y . Intuitively,
knowledge of X does not give us any additional knowledge of Y .

If this is the case we say that X is independent of Y and denote X ⊥ Y .

Some examples of independent random variables:

• Knowing that one coin flip came up heads doesn’t give you any information
about the next coin flip, we can say that successive coin flips are independent

• If I buy lottery tickets, whether or not I win the lottery is independent of the
color of the shirt I was wearing that day

◦ Unless I was wearing my lucky t-shirt

Manu Navjeevan (UCLA) Econ 103: Probability and Statistics 47 / 67



Multiple Random Variables: Conditioning and Independence

There are many characterizations of independence, but for now all we care about
are the following implications. If X ⊥ Y then:

PXY (a ≤ X ≤ b, c ≤ Y ≤ d) = PXY (a ≤ X ≤ b)PXY (c ≤ Y ≤ d) ∀a, b, c, d

and

E[g(Y )|X = x] = E[g(Y )] ∀x ∈ OX , g(·) : OY → R
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Multiple Random Variables: Conditioning and Independence

Assuming two random variables are independent is useful as the above implications
will greatly simplify calculations later on. However, we need to be careful when
doing so, as it is a rather strong assumption to make.

Let’s see some examples of variables that seem independent but may not be

• We may think that weather in a city is independent of average rent, is this the
case?

• Is attending a Greta Thunberg rally independent of your likelihood to attend
another climate rally?
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Multiple Random Variables: Review

Let’s Recap:

Multiple Random Variables:

• Describe multiple events whose outcomes are unknown.

• Have probabilities that the outcomes jointly take values in arbitrary subsets of
the joint outcome space.

Expectations:

• As before describe the “average” value of a function of the joint random
variables.

• The covariance function is a particular expectation we are interested in as it
describes how two variables “move with” each other.

Conditioning and Independence:

• The conditional expectation is the average value of Y for individuals who have
X = x.

• If knowing X does not give us any information on the distribution of Y we say
that X and Y are independent.
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Multiple Random Variables

Questions?
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The Normal Distribution

A particular distribution that will be of interest to us is the normal distribution.

Definition (Normal Distribution)

A random variable X follows a normal distribution with mean µ and variance σ2 if
it is continuously distributed with probability density function (pdf) given by

fX(x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (1)

If this is the case we denote X ∼ N(µ, σ2). If Z ∼ N(0, 1) we say that Z follows
a standard normal distribution.
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The Normal Distribution: Properties

The normal distribution has some useful properties that will be useful later on in
the course. We will review them here.

Property 1: If X ∼ N(µ, σ2) then (X − µ)/σ ∼ N(0, 1).

Why is this property useful? Because it means we can express probabilities for any
normal random variable in terms of Z ∼ N(0, 1).

Exercise: Show that if X ∼ N(2, 100) then P(X ≥ 22) = P(Z ≥ 2).

P(X ≥ 22) = P
(
X − 2

10
≥ 22− 2

10

)
= P (Z ≥ 2) .

Here we use the fact that µ = 2 and σ =
√

100 = 10.
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The Normal Distribution: Properties

Question: This property is great, but how do we calculate P(Z ≥ 2)?

Answer: Either use Z-table or calculate in R. Will cover in lab.
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The Normal Distribution: Properties

Property 2: If X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ) are jointly normal, then

W = aX + bY is also normally distributed for any a, b ∈ R.

What is E[W ]?

• Recall by linearity of expectation we have that E[aX + bY ] = aE[X] + bE[Y ]

• So, µW = E[W ] = aµX + bµY .

What is Var(W )?

• Recall that Var(aX + bY ) = a2 Var(X) + b2 Var(Y ) + 2abCov(X,Y )

• So, Var(W ) = Var(aX + bY ) = a2σ2
X + b2σ2

Y + 2abσXY

Putting these together we get that

W ∼ N
(
aµX + bµY , a

2σ2
X + b2σ2

Y + 2abσXY

)
.
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The Normal Distribution: Properties

Property 3: The distribution of X ∼ N(0, σ2) is symmetric. That is, for any x,
Pr(X ≥ x) = Pr(X ≤ −x).

Figure 2: Density is symmetric around zero

This is useful as it means that if X ∼ N(0, σ2
X) we can compute

Pr(|X| ≥ c) = Pr(X ≥ c) + Pr(X ≤ −c) = 2 Pr(X ≥ c).
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The Normal Distribution: Questions

Questions?
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The Sample Mean

Example: Suppose we are interested in the upcoming ASB election in which
Martinez is running against Smith. We randomly selection n = 100 students from
the population and ask them who they plan on voting for. Answers are recorded as

Xi =

{
1 if they answer Martinez

0 if they answer Smith
.

Based on our sample {Xi}n=100
i=1 we compute the sample mean (X̄n) and sample

variance s2n and find

X̄n =
1

n

n∑
i=1

Xi = 0.55 and s2n =
1

n

n∑
i=1

(
Xi − X̄n

)2
= 0.25.

Questions:

• Should we conclude that Martinez will win the election?

• Would we find the same values for X̄n and s2n if we ran the poll again?

• How should we acknowledge the uncertainty in X̄n?
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The Sample Mean: As a Random Variable

Key: Need to think of X̄n and s2n as random variables

Random Sampling:

• We think of the sample {Xi}ni=1 as n different random variables.

• Each Xi is sampled from (has the same distribution as) the population
distribution so that E[Xi] = µX and Var(Xi) = σ2

X .

In the context of the polling example this means that we are interested in the
population of voters in the UCLA ASB election. We randomly select n = 100
people from this population.

• The identities of each of these people sampled is random.

• We would like to use this random sample to learn about the population.
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The Sample Mean: As a Random Variable

Random sampling let’s us learn about the population by looking at our sample.

Sample Population

Measure of center X̄n E[X]

Measure of spread s2n Var(X)

But, to make the connection precise we must understand the distribution of X̄n.
Let’s start by getting the mean and variance of X̄n.

1. The expectation of X̄n is given E[X̄n] = E[X].

E[X̄n] = E[
1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

E[Xi] = E[X].

2. The variance of X̄n is given Var(X̄n) = σ2
X/n.

Var(X̄n) = Var(
1

n

n∑
i=1

Xi) =
1

n2
Var(

n∑
i=1

X2
i ) =

1

n2

n∑
i=1

Var(X) = σ2
X/n.

Note that Var(X̄n)→ 0 as n→∞. This is the basis of the Law of Large
Numbers which states that X̄n → µX as n→∞.
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The Sample Mean: Central Limit Theorem

Question: We know the mean and variance of X̄n but what is it’s distribution?

• Knowing the distribution of the sample mean is useful for computing say

P
(
|X̄n − E[X]| > 0.05

)
which is in turn a useful quantity to know for using X̄n to make inferences
about E[X].

Answer: Central limit theorem tells us that for n sufficiently large

X̄n ∼ N(µx, σ
2
X/n)

• What is “sufficiently large”? It’s a bit ambiguous, but typically we think that
the central limit theorem provides a good approximation for the distribution of
X̄n when n > 30.
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The Sample Mean: Central Limit Theorem

Using the properties of the normal distribution, we see that approximately for n
large:

X̄n − E[X̄n]√
Var(X̄n)

=
X̄n − µX

σX/
√
n
∼ N(0, 1).

We can replace σX with sn to get that for n large

X̄n − µX

sn/
√
n
≈ X̄n − µX

σX/
√
n
∼ N(0, 1).
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The Sample Mean: Central Limit Theorem

X̄n − µX

sn/
√
n
∼ N(0, 1)

This result ends up being very useful for using X̄n to learn about µX by allowing
us to build confidence intervals or conduct hypothesis tests.
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The Sample Mean: Central Limit Theorem

Let’s return to our initial polling example to see the usefuleness of the central limit
theorem. Recall that in this example X̄n = 0.55 and s2n = 0.25.

Problem: What is the probability of finding (with n = 100) X̄n = 0.55 and
s2n = 0.25 if the true proportion of Martinez voters in the population is E[X] = 0.5?

Answer: Using the central limit theorem

P(X̄n ≥ 0.55) = P

(
X̄n − µX

sn/
√
n
≥ 0.55− µX

sn/
√
n

)

= P

(
X̄n − µX

sn/
√
n
≥ 0.55− 0.5

0.5/10

)
≈ P(Z ≥ 1) = 0.159
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The Sample Mean: Questions

Questions
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